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CHAPTER

ONE

1. INTRODUCTION TO CREASE

Members of Prof. Arthi Jayaraman’s research lab have developed the ‘Computational Reverse-Engineering Analysis
for Scattering Experiments’ (CREASE) method to address these needs for alternate scattering analysis methods
that are applicable to both conventional soft materials structures with existing analytical models and unconventional
structures/chemistries that may not have good analytical models.

Fig. 1: Figure 1.: CREASE workflow. CREASE takes as input experimentally measured 1D scattering profiles and
identifies as output the key structural features as well as representative 3D real space structures whose computed scat-
tering profiles matches the experimental scattering input.

Figure 1 shows the general workflow in CREASE where experimentally measured 1D scattering profiles are taken
as input and CREASE, through an internal optimization, generates as output the key structural features as well as
representative 3D real space structures whose computed scattering profiles match the experimental scattering input. If
you are interested in this method, you may wish to watch Prof. Jayaraman’s recently recorded lecture on CREASE and
its uses. The lecture can be found in this link.

In March 2024, the CREASE method was extended and made available as CREASE-2D. This method works directly
with experimentally measured 2D scattering profiles and outputs the 3D real space structures which can additionally
have structural anisotropy (described further in Section 6).
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CHAPTER

TWO

2. GUIDING PHILOSOPHY

CREASE’s workflow is based on the philosophy that the real-space three-dimensional (amorphous) arrangement of
constituents in soft materials can be reduced to a lower dimensional mathematical representation of key ‘structural
features’ and that the distributions of those structural features give rise to a computed scattering profile. For example,
for a system with core-corona spherical micelles at low concentrations, these structural features could be sizes of core
and corona and probability distributions of those sizes. At higher concentration, there would be additional structural
features that describe the relative neighborhood of each micelle, for example through mathematical order parameters
describing positional and orientational order. The user can decide the types of structural features they are interested
in (e.g., any fundamentally interesting structural information and/or structural features that the researcher knows will
impact the soft materials’ eventual application). Once the users have decided on the key structural features they are
interested in, they can use CREASE to run an optimization loop where it iterates over various sets of structural features.
In the optimization loop, for each set of structural features CREASE i) calculates the computed scattering profile, Icomp
(q) (more about this calculation below), and ii) compares the Icomp (q) profile to the experimental (input) profile, Iexp
(q), eventually converging towards the sets (note the intentional use of plural!) that have Icomp (q) profiles most closely
matching the input Iexp (q).
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CHAPTER

THREE

3. CREASE-GA IMPLEMENTATION

CREASE has been implemented in a python code using a simple optimization method - genetic algorithm. CREASE’s
genetic algorithm (CREASE-GA) takes as input 1D SAXS and/or SANS scattering profile from amorphous soft mate-
rials structures. It also requires the user’s choice of the types of structural features (i.e., ‘genes’ of the ‘individuals’ in
GA) based on their knowledge of the general shape of the assembled structure from other imaging techniques and/or
subject matter expertise. Then, CREASE-GA starts with an initial ‘generation’ of multiple sets of structural features
(i.e., multiple ‘individuals’ with specific values of ‘genes’) and iterates in the GA loop towards the optimal individuals
whose genes gives rise to a computed scattering profile, Icomp (q), that closely matches the input experimentally mea-
sured scattering profile, Iexp (q). One important calculation in this loop is the Icomp (q) for a given set (‘individual’) of
structural features (‘genes’); this has been done so far in one of two ways (Figure 2). One way (let us call it Debye
method) is by creating for each set of genes their representative three-dimensional real space structures filled with point
scatterers whose scattering length densities represent the constituents of the system, and using the Debye equation on
the scatterer positions to compute Icomp (q). This way can be computationally intensive either due to the structure gen-
eration step or the Debye calculation despite computational tricks [1-3]. Another way is by using a machine learning
(ML) model that links the structural features directly to Icomp (q); Jayaraman and coworkers have used neural networks
trained on thousands of computed scattering profiles calculated from the Debye method for various sets of genes. Using
this ML model for Icomp (q) calculation can give orders of magnitude speed up over the Debye method, after the initial
time investment of training the ML model.
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Fig. 1: Figure 2. Two ways to calculate the ‘computed scattering profile’ or Icomp (q) for each ‘individual’ in the genetic
algorithm. Each individual has a unique set of genes (i.e., a set of structural features). Both the Debye equation-based
method (left) and machine learning approach (right) connect the values of those structural features or genes to a Icomp
(q) vs. q profile. In this figure a vesicle with a hollow core, an inner A-layer, a B-layer, and an outer A-layer is used
as an example to show that the dimensions related to those layers and core become the ‘genes’ for this system. There
can be additional or fewer genes depending on the user’s interest. It is important to note that in the machine learning
approach the user may want to represent the structural features (genes) as normalized dimensions to make the trained
machine learning model transferrable. (see for example Ref . [4])
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CHAPTER

FOUR

4. HOW HAS CREASE BEEN USED SO FAR?

CREASE method has been used to interpret small angle scattering results to

a. Identify relevant dimensions of assembled structures in polymer solutions at dilute concentrations [5-9]:
CREASE has been applied to characterize structure of the ‘primary particle’ using scattering profiles I(q) ~
P(q) (i.e., conditions where S(q) is ~1) for a variety of ‘primary particles’ (micelles [6, 7, 9], vesicles [8], and
fibrils [5]) bypassing the need for an analytical model.

b. Understand the amorphous structure of spherical particles at high concentrations regardless of extent of mix-
ing/segregation: CREASE has also been extended to analyze S(q) part of the scattering profiles from concentrated
binary mixture of polydisperse spherical nanoparticles (i.e., P(q) is a sphere form factor) to determine the extent
of segregation/mixing of the two types of nanoparticles and the precise mixture composition [4, 10].

c. Elucidate the amorphous structure of particles / micelles in solutions, with unknown primary particle form and
unknown assembled/dispersed structure [11]: Most recently, for systems where one does not know the P(q) or
S(q) a priori, CREASE has been extended to simultaneously interpret structural information held in P(q) and
S(q) and appropriately called ‘P(q) and S(q) CREASE’ [11].

CREASE has taken as input 1D SAXS profiles and/or SANS profiles: In the studies above, the input to CREASE has
been (i) a single SAXS profile of the system, or (ii) one SAXS profile and a one SANS profile of the same system, or
(iii) multiple SANS profiles with contrast matching one or the other component(s) in the system with the solvent. Next
development steps of CREASE development are focused on 2D profiles for soft materials that show anisotropy in the
assembled structure.

CREASE with Debye method vs. ML-model for computed scattering profile calculation: In earlier implementations of
CREASE, the Debye method for computed scattering profile calculation was used; as noted above this calculation was
initially found to be quite time consuming. In following work, the structure generation (done in every step of Debye
method) was found to more computationally intensive while the computed scattering calculations using Debye method
have been made faster than in previous implementations. The machine learning (ML) enhanced CREASE-GA, with a
well-trained ML model avoids both Debye equation based computed scattering calculation and the three-dimensional
real space structure generation in the optimization loop, making is significantly faster than using Debye method (e.g.,
one can complete CREASE-GA optimization is less than an hour on a laptop with a pre-trained ML model!)
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CHAPTER

FIVE

5. UNIQUE ADVANTAGES OF CREASE

Here are some unique advantages of CREASE-GA regardless of availability of appropriate analytical models for the
system being characterized:

• The computed scattering profile calculation is done using scatterer placement within structures defined by the
‘genes’ (i.e., structural features). This treats all soft materials systems in the same way as being composed of
scatterers with no detail about the molecules. So, even in the case of polymer chains, there are no chains in this
GA step – only scatterers. This overcomes issues one may have not knowing anything about chain conformations
(e.g., is Gaussian distribution of chain conformations valid or not?). If one needs information about the chain
configurations they can follow up this GA step with an molecular simulation step using models (coarse-grained
or atomistic) representing polymers.

• Any structural feature of interest can be a ‘gene’; for the same system, two different users may be interested in
different structural features. For example, in the case of vesicles (Figure 2), one user may be interested in all four
dimensions (core radius and thickness of every individual layer in the shell leading to four ‘genes’) and another
user may be interested simply in the core radius and shell thickness. Further, some structural features the user
may be interested in may not be in any existing analytical model. Note: If and how well CREASE can identify a
structural feature reliably from an input experimental scattering profile will depend on how much that structural
feature affects the computed scattering profile and how the computed scattering profile changes with the values
of the structural features. See for example recent work on analysis of scattering results from methylcellulose
fibrils from Wu and Jayaraman [5]. In that system, the length, Kuhn length (KL), and diameter of fibrils are the
structural features of interest, however Wu and Jayaraman showed that KL values could only be identified well
if they were within a certain range of values for the methylcellulose systems. Such sensitivity analysis is very
useful in deciding on the genes used in the optimization.

• Genetic algorithm (GA) is the chosen optimization method here because it is easy for others to adopt regardless of
prior computational knowledge and experience. Furthermore, GA’s output contains multiple individuals whose
computed scattering matches experimental scattering. This is useful as it informs us about the degeneracy of
solutions for a given experimental profile; in other words, there can be many different structures whose computed
scattering profile can match with experiments, so knowing this distribution from the converged ‘best match’
individuals in the last couple of generations of GA is valuable.

• CREASE also gives as output representative real-space structures – either as is because the system is made of
particles whose positions can be generated from scatterer positions or via additional molecular modeling and
simulation step to show chain conformations in the structures output from CREASE-GA (e.g., Wessels et al.
[7]). These structures can then be used as an input for other non-equilibrium simulations or calculations of
properties that depend on structure (e.g., resistor network model calculation for electrical conductivity12 and
finite-difference time-domain method for optical properties [13, 14]).

• One major advantage of Machine learning (ML) enhanced CREASE-GA is the computational speed up. As
a result, ML-enhanced CREASE-GA can facilitate high-throughput analysis of related systems as long as the
trained ML model, in particular the structural features that are inputs to the ML model, are valid for those related
systems.
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• CREASE can be used to test the researcher’s hypotheses about how the soft materials structures of interest
form/evolve with changing conditions. The user is directed to examples of hypothesis testing in the studies
presented in Refs. [5, 11, 15]
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CHAPTER

SIX

6. EXTENSION OF CREASE TO 2D PROFILES: CREASE-2D

As noted in our recent review article [16], the above studies of CREASE worked with the input of 1D SAXS profiles
and/or SANS profiles, either (i) a single SAXS profile of the system, or (ii) one SAXS profile and a one SANS profile
of the same system, or (iii) multiple SANS profiles with contrast matching one or the other component(s) in the system
with the solvent. To extend CREASE to interpret 2D profiles for soft materials that show anisotropy in the assembled
structure, Jayaraman and coworkers have now developed CREASE-2D. [17] CREASE-2D enables direct interpretation
of 2D profile which is far more complex than analysis of 1D scattering profiles, I(q) vs. q, obtained by averaging along
all azimuthal angles. Currently, researchers who study materials with any form of anisotropic structure (e.g., processed
aligned synthetic conducting fibers, field-driven orientational alignment in polymers for sensing/electronics, sheared
formulations during rheological measurements in personal care industry) need to interpret the entire 2D scattering
profile. Yet analyses of such 2D profiles have traditionally only been done by fitting analytical models to 1D profiles
obtained by averaging along all azimuthal angles or sections of the 2D profile. Such averaging schemes lose key
information about the anisotropic structural arrangements that can drive the function of the materials. CREASE-2D
method overcomes these current limitations and provides polymer researchers the speed (due to ML surrogate models)
and accuracy (by avoiding any averaging of the 2D profile) to interpret quantitative structural information (e.g., domain
shapes, sizes, orientation, volume fraction) from the entire 2D scattering profiles without any approximations. The
surrogate model used to link structural features to 2D scattering profile was trained on 3D structures generated by a
recent developed computational method - Computational Approach for Structure Generation of Anisotropic Particles
(CASGAP). [18] CASGAP generates representative 3D structures for input desired distribution of particle (representing
domain) sizes and shapes and desired spatial orientations without particles overlapping at desired packing density.
Using 2400 generated structures generated from CASGAP, Jayaraman and co-workers were able to train the surrogate
XG-Boost ML model. Then, using 600 structures (unseen by the surrogate model) they validate the performance of
the ML-model as well as the successful performance of the entire CREASE-2D workflow.
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1. Brisard, S.; Levitz, P., Small-angle scattering of dense, polydisperse granular porous media: Computation free
of size effects. Phys. Rev. E 2013, 87 (1), 013305. (link)

2. Olds, D. P.; Duxbury, P. M., Efficient algorithms for calculating small-angle scattering from large model struc-
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Mixtures and Solutions. ACS Cent. Sci. 2022, 8 (7), 996-1007. (link)

5. Wu, Z.; Jayaraman, A., Machine Learning-Enhanced Computational Reverse-Engineering Analysis for Scatter-
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(24), 11076-11091. (link)
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6.2 Contact us

If you have any questions or feedback, please let us know by emailing creasejayaramanlab AT gmail.com.

6.2.1 Installation

To install this package on a linux or macOS machine, follow these steps:

1. We will be using Anaconda to handle the python environment. First, we need to install anaconda on our machine.
You can also consider installing miniconda for faster installation and lower storage consumption only if you are
an advanced user. We recommend installing the full version of anaconda if you have limited experience with
python and/or computer programming.

2. At this point, you will need a bash terminal to work with. All the installation steps after this step will need to be
accomplished from a terminal, using command line interface.

• If you are on a linux or MacOS machine

You can directly launch a terminal.

• If you are on a Windows machine

If you have installed the full version of Anaconda/Miniconda in Step 1, the most straightforward
way to launch a terminal will be using the Anaconda prompt that comes with the conda installation.
You should be able to find the Anaconda prompt from your Start menu. You can also consider
installing Windows Subsytem for Linux (WSL).

3. Download the package.

• If you have git installed, this can be done using the following command from a terminal:

git clone https://github.com/arthijayaraman-lab/crease_ga

• You can also directly download the package as a ZIP file from our github webpage by following the guidance
here. If you are following this route, you will need to unzip the package to your desired location after the
download.

4. Create a new conda environment and install the package along with all the dependencies.

• Navigate into the root directory of the cloned package. If you are using the anaconda prompt, you can look
up common windows command line prompts. If you are using a unix-based shell (linux, macOS, or WSL
subsystem), you can look up common commands for Unix. Either case, all you will need would probably
be displaying list of files and directories in the current folder (dir for windows, ls for unix), and moving
to different directories (cd [new_directory_path] for both windows and unix). You should end up at a
directory called crease_ga and be able to see files named setup.py, environment.yml and README.md
(among others) in the directory.

• create a fresh conda environment with creaes_ga package and its dependencies installed using

conda env create -f environment.yml

• Activate the environment with

conda activate crease_ga

To check if the package and its dependencies have been properly installed, you can try running

python3
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to launch python, and then in the resulting python command line, run

import crease_ga
crease_ga.__version__

If everything is properly installed, you should see the current version number of the package printed. In
that case, you are all set to use the crease_ga package! Remember to activate the proper environment
every time by with conda activate crease_ga.

You can run the Jupyter notebook tutorials with the command

jupyter notebook

• NOTE: if you intend to run this on a supercomputing cluster, you will need to follow the steps to create a python
environment on the corresponding cluster.

Try the package without installation

• If you would like to first try our package by running our tutorial, you can directly launch a docker image of our
environment, and access and interact with our jupyter notebook tutorial from a web browser without performing
any installation steps above. To do this, click this badge:

6.2.2 Sample Workflow

Crease_ga allows the user to fit scattering profiles only using several lines of python code in an intuitive way. Below is
a sample workflow for a user who would like to adopt CREASE to analyze an input scattering profile for vesicles.

import crease_ga as cga
#Initialize a model
m = cga.Model(pop_number = 5, generations = 5, nloci = 7)
#load a shape
m.load_shape(shape='vesicle',shape_params=[24,54,0.5,50.4,50.4,0.55,7],

minvalu = (50, 30, 30, 30, 0.1, 0.0, 0.1),
maxvalu = (400, 200, 200, 200, 0.45, 0.45, 4))

#Read Iexp(q) from a file
m.load_iq('../IEXP_DATA/Itot_disper_10_Ain12_B6_Aout12_nLP7_dR0.2.txt')
#Solve
m.solve(output_dir='./test_outputs_1')

The user can try this code out by downloading and running the jupyter notebook here.

6.2.3 crease_ga.Model

class crease_ga.Model(pop_number=5, generations=10, nloci=7, yaml_file='x')
The basic class that defines the model to be used to solve for a scattering profile.

See also:

crease_ga.adaptaion_params.adaptation_params

Attributes
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pop_number: int.
Number of individuals within a generation.

generations: int.
Number of generations to run.

nloci: int.
Number of binary bits to represent each parameter in an individual. The decimal parameter
value is converted to binary, with “all 0s” corresponding to the min value and “all 1s” cor-
responding to the max value. The larger the value, the finer the resultion for each parameter.

adaptation_params: crease_ga.adaptation_params.adaptation_params
Object of adaptation parameters used for this model.

load_shape(shape='vesicle', shape_params=None, minvalu=None, maxvalu=None)
Load a shape.

Parameters
shape: str. name of the shape.

Currently supported builtin shapes are “vesicle” and “micelle”. Can also specify a shape
developed in a crease_ga plugin.

shape_params: list.
Values of shape-specific descriptors. See the API of corresponding shape for details. If
not specified, or an incorrect number of shape descriptor values are specified, the default
values of the shape-specific descriptors will be loaded.

minvalu,maxvalu: list.
Values of the minimum and maximum boundaries of the parameters to be fit. If not speci-
fied, or an incorrect number of input parameter boundaries are specified, the default bound-
aries of the input parameters of the shape will be loaded.

solve(name='ga_job', verbose=True, backend='debye', fitness_metric='log_sse', output_dir='./', n_cores=1,
converge=10, needs_postprocess=False)

Fit the loaded target I(q) for a set of input parameters that maximize the fitness or minimize the error metric
(fitness_metric).

Parameters
name: str.

Title of the current run. A folder of the name will be created under current working direc-
tory (output_dir), and all output files will be saved in that folder.

verbose: bool. Default=True.
If verbose is set to True, a figure will be produced at the end of each run, plotting the I(q)
resulting from the best individual in the current generation and the target I(q).

Useful for pedagogical purpose on jupyter notebook.

fitness_metric: string. Default=’log_sse’.
The metric used to calculate fitness. Currently supported:

“log_sse”, sum of squared log10 difference at each q point.

output_dir: string. Default=”./”
Path to the working directory.

n_cores: int. Default=1
Number of cores to parallelize over
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converge: int. Default=10
The generation countdown to stop optimization. If the minimum error does not improve
after converge generations, the optimization ends.

needs_postprocess: bool. Default=False
Some CREASE versions require additional steps. Typically required for S(q) CREASE
that outputs a 3D visualization.

6.2.4 crease_ga.shapes.vesicle

class crease_ga.shapes.vesicle.scatterer_generator.scatterer_generator(shape_params=[24, 54,
0.5, 50.4, 50.4, 0.55, 7],
minvalu=(50, 30, 30,
30, 0.1, 0.0, 0.1),
maxvalu=(400, 200,
200, 200, 0.45, 0.45,
4))

The wrapper class for vesicle shape. Default length unit: Angstrom.

See also:

crease_ga.Model.load_shape

Notes

The following 7 shape-specific descriptors are to be specified by user (see *Attributes*) as a list, in the
precise order as listed, while calling `Model.load_shape` to load this shape:
num_scatterers:

Number of scatterers used to represent a chain. Default: 24

N:
Number of monomers in a chain. Default: 54

eta_B:
Packing fraction of scatterers in B layer. Default: 0.5

lmono_b:
Diameter of a monomer of chemistry B. Default: 50.4 A

lmono_a:
Diameter of a monomer of chemistry A. Default: 50.4 A

fb:
Fraction of monomers in chain that are of B type. fa = 1-fb. Default: 0.55

nLP:
Number of replicates for each individual. Default: 7

The following 7 parameters are to be predicted, in the precise order as listed, by GA:
R_core:

Core radius. Default [min,max]: [50 A, 400 A]

t_Ain:
Thickness of inner A layer. Default [min,max]: [30 A, 200 A]
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t_B:
Thickness of B layer. Default [min,max]: [30 A, 200 A]

t_Aout:
Thickness of outer A layer. Default [min,max]: [30 A, 200 A]

sigma_Ain:
Split of solvophilic scatterers between inner and outer layers. Default [min,max]: [0.1, 0.45]

sigma_R:
Dispersity in vesicle size as implemented in the core radius. Default [min,max]: [0.0, 0.45]

log10(bg):
Negative log10 of background intensity. E.g. an background intensity of 0.001 leads to this value being 3.
Default [min,max]: [0.1,4]

converttoIQ(qrange, param)
Calculate computed scattering intensity profile.

Parameters
qrange: numpy.array

q values.

param: numpy.array
Decoded input parameters. See Notes section of the class documentation.

Returns
IQid: A numpy array holding I(q).

6.2.5 crease_ga.shapes.micelle

class crease_ga.shapes.micelle.scatterer_generator.scatterer_generator(shape_params=[8, 24,
0.5, 0.5, 50.4, 50.4],
minvalu=(2, 0, 0),
maxvalu=(60, 1, 5))

The wrapper class for micelle shape. Default length unit: Angstrom.

See also:

crease_ga.Model.load_shape

Notes

The following 6 shape-specific descriptors are to be specified by user (see *Attributes*) as a list, in the
precise order as listed, while calling `Model.load_shape` to load this shape:
num_scatterers:

Number of scatterers per chain (num_scatterers). Default: 8

N:
Number of beads on chain. Default: 24

fA:
fraction of beads that are of chemistry A. Default: 0.5

rho_core:
Density or volume freaction of the solvophobic block. Default: 0.5
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lmono_a:
Monomer contour length (diameter) of chemistry B. Default: 50.4 A

lmono_b:
Monomer contour length (diameter) of chemistry A. Default: 50.4 A

The following 3 parameters are to be predicted, in the precise order as listed, by GA:
N_agg:

Aggregation number. Default [min,max]: [2 A, 60 A]

ecorona:
Fraction of the micelle diameter that is occupied by the corona. Default [min,max]: [0,1]

log10(bg):
Negative log10 of Background intensity. E.g. an background intensity of 0.001 leads to this value being 3.
Default [min,max]: [0,5]

converttoIQ(qrange, param)
Calculate computed scattering intensity profile.

Parameters
qrange: numpy.array

q values.

param: numpy.array
Decoded input parameters. See Notes section of the class documentation.

Returns
IQid: A numpy array holding I(q).

6.2.6 crease_ga.adaptation_params

class crease_ga.adaptation_params(gdmmin=0.005, gdmmax=0.85, pcmin=0.1, pcmax=1, pmmin=0.006,
pmmax=0.25, kgdm=1.1, pc=0.6, pm=0.001)

Class for all adaptation parameters needed for a GA run.

Attributes
gdmmin: float. Default=0.005.

The minimum acceptable value of gdm, a measurement of diversity within a generation (high
gdm means low diversity, and vice versa). If gdm of the current generation falls below gdm-
min, pc will be multiplied by kgdm and pm will be divided by kgdm to reduce diversity.

gdmmax: float. Default=0.85.
The maximum acceptable value of gdm, a measurement of diversity within a generation (high
gdm means low diversity, and vice versa). If gdm of the current generation exceeds gdmmax,
pc will be divided by kgdm and pm will be multiplied by kgdm to increase diversity.

pcmin: float. Default=0.1.
Minimum value of pc. pc cannot be further adjusted below pcmin, even if gdm is still too
high.

pcmax: float. Default=1.
Maximum value of pc. pc cannot be further adjusted above pcmax, even if gdm is still too
low.
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pmmin: float. Default=0.006.
Minimum value of pm. pm cannot be further adjusted below pmmin, even if gdm is still too
low.

pmmin: float. Default=0.25.
Maximum value of pm. pm cannot be further adjusted above pmmax, even if gdm is still too
high.

kgdm: float. Default=1.1.
Should be > 1. The magnitude of adjustment for pc and pm in case gdm falls ouside of [
gdmmin,`gdmmax` ].

pc: float. Default=0.6.
possibility of a crossover action happening on an individual in the next generation. pc is
updated after each generation according to gdm.

pm: float. Default=0.001.
possibillity of a mutation action happening on each gene in an individual. pm is updated
after each generation according to gdm.

update(gdm)
Update pc and pm according to a gdm value.

6.2.7 crease_ga.utils

utils.initial_pop(nloci, numvars)
Produce a generation of (binary) chromosomes.

Parameters
popnumber: int

Number of individuals in a population.

nloci: int
Number of binary bits to represent each parameter in a chromosome.

numvars: int
Number of parameters in a chromosome.

Returns
pop: np.array of size (popnumber,`nloci`*`numvars`)

A numpy array of binary bits representing the entire generation, with each row representing
a chromosome.

utils.decode(indiv, nloci, minvalu, maxvalu)
Convert a binary chromosome from a generation back to decimal parameter values.

Parameters
pop: np.array.

A numpy array of binary bits representing the entire generation, with each row representing
a chromosome.

indiv: int.
The row ID of the chromosome of interest.

nloci: int
Number of binary bits used to represent each parameter in a chromosome.
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minvalu, maxvalu: list-like.
The minimum/maximum boundaries (in decimal value) of each parameter. “All-0s” in binary
form will be converted to the minimum for a parameter, and “all-1s” will be converted to the
maximum.

Returns
param: np.array.

A 1D array containing the decimal values of the input parameters.

6.2.8 Frequently Asked Questions

Do I have to use the Debye scattering equation to evaluate a scattering profile (I(q))? Can I use known
analytical models, trained neural network models, etc.?

With the crease_ga package, we aim to provide a general framework for analyzing scattering profiles using a genetic
algorithm (GA) as the optimization method.

1. The GA method can be used to analyze and interpret an input scattering profile by assuming a morphology,
defining parameters relevant for that morphology (e.g., dimensions, extent of segregation of molecules in various
domains within the morphology), placing scatterers within that assumed morphology, calculating the computa-
tional scattering profile using the scatterer placements, and finding the values of the parameters whose computed
scattering profile closely matches the input scattering profile.

2. The GA method can also be used to optimize the genes by using a machine learning approaches like a pretrained-
neural network which avoids the generation of the three-dimensional real space structure and its scattering cal-
culation using the Debye equation, and directly provides a computed scattering profile.

3. The GA method can also be used to fit an analytical model for that assumed morphology; in this case it would
be optimizing the parameters defined in the analytical model.

In the above, the first two approaches rely on defining a certain genome (a set of parameters) for the assumed mor-
phology of interest (vesicles, micelles, fibrils, etc.) The detailed implementation of this step and its variations (e.g.,
incorporation of dispersity, parallelization, etc.) all fall under “shapes”.

How does crease_ga support different assembled shapes and morphologies (e.g., vesicle, micelles,
fibrils, etc.)?

Currently, we support two built-in “shapes” in the crease_ga codebase:

• the vesicle model as implemented in Ye, Wu and Jayaraman

• the micelle model as implemented in Beltran-Villegas et al.

Both “shapes” are copied as-is from the articles, without any parallelization, to facilitate the usage of these “shapes”
in a jupyter notebook for pedagogical purposes. While we plan to expand the codebase to include other “shapes” we
have developed and are developing, we also encourage users to implement their own shapes of interest.
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6.2.9 Contribute by developing your own plugins

Crease_ga allows users to develop and contribute their own “shapes” through external plugins, and crease_ga is
equipped to allow external plugins to be discoverable through package metadata. See here for an example plugin
(cga_bbvesicle) that implements the analytical model for lipid vesicles in the Brzustowicz and Brunger (2005) paper.

How should I design my plugins?

The plugins should be classes that are set up exactly as one of the builtin shapes. In the source code of the package,
a scatterer_generator class should exist and contain a converttoIQ method that takes as input a list of q-values
(qrange) and an individual (param), and returns a scattering profile I(q) evaluated at these q-values. Other helper
methods can be added as you like, but converttoIQ is the bare minimum and the only method that will be directly
called by crease_ga. It is also advised that for each shape-specific descriptor and input parameter, the definition, de-
fault value (for shape-specific parameters), and default min/max bounds (for input parameter) should be explained as
docstrings for the scatterer_generator class.

What do I need to do to make my plugin discoverable?

You will simply need to specify the entry point for your scatterer_generator class in your setup.py.

A simplified example of setup.py is as following:

from setuptools import setup

setup(
name="name-of-package",
install_requires="crease_ga",
entry_points={"crease_ga.plugins":["registered-name-of-plugin=name-of-package.

→˓scatterer_generator:scatterer_generator"]},
py_modules=["name-of-package"],
)

This will allow the plugins to be registered with crease_ga by the name registered-name-of-plugin. If
both crease_ga and your plugin are installed properly (in the order of crease_ga first, then your plugin), the
scatterer_generator class of your plugin can be loaded with the following code:

import crease_ga.plugins as plugins
a_name_you_prefer = plugins['registered-name-of-plugin'].load()
new_scatterer_generator = a_name_you_prefer()

More commonly, instead of explicitly loading the scatterer_generator, all you will need is to load the shape from your
plugin to crease_ga.Model by using crease_ga.Model.load_shape(shape=’registered-name-of-plugin’).
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6.2.10 Giving us feedback

We would like to hear your feedback about crease_ga. It will be greatly appreciated if you could take some time to fill
out this feedback google form after you have gone through the tutorial we prepared. You are also welcome to directly
send your suggestions and critiques to creasejayaramanlab AT gmail.com.
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